Layer potentials and boundary value problems for elliptic equations with complex L∞ coefficients satisfying the small Carleson measure norm condition
نویسندگان
چکیده
منابع مشابه
The L regularity problem for elliptic equations satisfying a Carleson measure condition
We prove that the L2 regularity problem is solvable for the elliptic equation ∑n j,k=1 ∂j(ajk∂ku) = 0 when ∑ i,j,k |∂iajk(x)|xndx is a Carleson measure with a sufficiently small constant, ∑ i,j,k |∂iajk(x)| ≤ C/xn and the bottom row of the coefficient matrix has the particular form (0, 0, . . . , 0, 1). This is done in any dimension n. This was proved in the case n = 2 earlier in [9] without th...
متن کاملMeasure boundary value problems for semilinear elliptic equations with critical Hardy potentials
Article history: Received 16 October 2014 Accepted after revision 26 January 2015 Available online 26 February 2015 Presented by Haïm Brézis Let Ω ⊂ RN be a bounded C2 domain and Lκ = − − κ d2 where d = dist(., ∂Ω) and 0 < κ ≤ 4 . Let α± = 1 ± √ 1− 4κ , λκ the first eigenvalue of Lκ with corresponding positive eigenfunction φκ . If g is a continuous nondecreasing function satisfying ∫ ∞ 1 (g(s)...
متن کاملBoundary Value Problems for Elliptic Equations
where án, denotes differentiation in the direction of tlie normal to 8B . As is well known, there are explicit formulas for the solutions of the aboye problems, and one can then give a very careful analysis of the solutions when, say f E LP(áB, do), 1 < p < oo . In both cases, the boundary values are taken in the sense of non-tangential convergence, Le ., if Q E aB, and F(Q) _ F. (Q) _ {X E B1 ...
متن کاملCarleson measures and elliptic boundary value
In this article, we highlight the role of Carleson measures in elliptic boundary value prob5 lems, and discuss some recent results in this theory. The focus here is on the Dirichlet problem, with 6 measurable data, for second order elliptic operators in divergence form. We illustrate, through selected 7 examples, the various ways Carleson measures arise in characterizing those classes of operat...
متن کاملLayer Potentials and Boundary-Value Problems for Second Order Elliptic Operators with Data in Besov Spaces
This monograph presents a comprehensive treatment of second order divergence form elliptic operators with bounded measurable t-independent coefficients in spaces of fractional smoothness, in Besov and weighted L classes. We establish: (1) Mapping properties for the double and single layer potentials, as well as the Newton potential; (2) Extrapolation-type solvability results: the fact that solv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2015
ISSN: 0001-8708
DOI: 10.1016/j.aim.2014.11.009