Layer potentials and boundary value problems for elliptic equations with complex L∞ coefficients satisfying the small Carleson measure norm condition

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The L regularity problem for elliptic equations satisfying a Carleson measure condition

We prove that the L2 regularity problem is solvable for the elliptic equation ∑n j,k=1 ∂j(ajk∂ku) = 0 when ∑ i,j,k |∂iajk(x)|xndx is a Carleson measure with a sufficiently small constant, ∑ i,j,k |∂iajk(x)| ≤ C/xn and the bottom row of the coefficient matrix has the particular form (0, 0, . . . , 0, 1). This is done in any dimension n. This was proved in the case n = 2 earlier in [9] without th...

متن کامل

Measure boundary value problems for semilinear elliptic equations with critical Hardy potentials

Article history: Received 16 October 2014 Accepted after revision 26 January 2015 Available online 26 February 2015 Presented by Haïm Brézis Let Ω ⊂ RN be a bounded C2 domain and Lκ = − − κ d2 where d = dist(., ∂Ω) and 0 < κ ≤ 4 . Let α± = 1 ± √ 1− 4κ , λκ the first eigenvalue of Lκ with corresponding positive eigenfunction φκ . If g is a continuous nondecreasing function satisfying ∫ ∞ 1 (g(s)...

متن کامل

Boundary Value Problems for Elliptic Equations

where án, denotes differentiation in the direction of tlie normal to 8B . As is well known, there are explicit formulas for the solutions of the aboye problems, and one can then give a very careful analysis of the solutions when, say f E LP(áB, do), 1 < p < oo . In both cases, the boundary values are taken in the sense of non-tangential convergence, Le ., if Q E aB, and F(Q) _ F. (Q) _ {X E B1 ...

متن کامل

Carleson measures and elliptic boundary value

In this article, we highlight the role of Carleson measures in elliptic boundary value prob5 lems, and discuss some recent results in this theory. The focus here is on the Dirichlet problem, with 6 measurable data, for second order elliptic operators in divergence form. We illustrate, through selected 7 examples, the various ways Carleson measures arise in characterizing those classes of operat...

متن کامل

Layer Potentials and Boundary-Value Problems for Second Order Elliptic Operators with Data in Besov Spaces

This monograph presents a comprehensive treatment of second order divergence form elliptic operators with bounded measurable t-independent coefficients in spaces of fractional smoothness, in Besov and weighted L classes. We establish: (1) Mapping properties for the double and single layer potentials, as well as the Newton potential; (2) Extrapolation-type solvability results: the fact that solv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2015

ISSN: 0001-8708

DOI: 10.1016/j.aim.2014.11.009